Fraunhofer schickt Spinne in Gefahrenzonen

CloudE-GovernmentEnterpriseManagementRegulierungServer

Acht Beine hat die Spinne und damit dient sie als Vorbild für einen extrem mobilen Laufroboter.

Noch ist der Laufroboter des Fraunhofer IPA nur ein Prototyp. Doch eines Tages soll das leichte Gerät in zerstörte Industrieanlagen vordringen und dort über Gräben, Steine und Geröll klettern und Kameras und Messgeräte an einen Unglücksort bringen.

Wie bei einer Spinne berühren jeweils vier Beine den Boden, während die anderen vier sich nach vorne in die nächste Ausgangsposition drehen. Auch optisch erinnert das künstliche Gliedertier an den Achtfüßler.

Die Beine der Roboterspinne sind bis zu 20 Zentimeter lang. Elastische Faltenbälge dienen als Gelenke. Quelle: Fraunhofer IPA
Die Beine der Roboterspinne sind bis zu 20 Zentimeter lang. Elastische Faltenbälge dienen als Gelenke. Quelle: Fraunhofer IPA

Künftig soll der Laufroboter seinen Dienst als Erkundungswerkzeug in für Menschen nur schwer zugänglichen oder gefährlichen Umgebungen versehen. Nach Naturkatastrophen, Industrie- oder Reaktorunfällen oder bei Feuerwehreinsätzen kann er die Rettungskräfte unterstützen, indem er etwa Live-Bilder überträgt oder Gefahrenquellen wie austretendes Gas aufspürt.

Auch bei der Fortbewegung haben die Fraunhofer-Forscher sich die Spinne zum Vorbild gemacht. Manche Spinnen können sogar springen. Dies gelingt ihnen durch hydraulisch betriebene Faltenbälge, die als Gelenke dienen und für die Beweglichkeit der Glieder sorgen. Da den Tieren Muskeln für das Strecken der Beine fehlen, bauen sie im Körper hohen Druck auf, mit dem sie Flüssigkeit in die Gliedmaßen pumpen. Schießt die Flüssigkeit in die Beine, werden sie gestreckt.

“Wir haben uns dieses Fortbewegungsprinzip zunutze gemacht und auf unseren bionischen, per Computer gesteuerten Leichtbauroboter angewandt. Seine acht Beine und der Körper sind ebenfalls mit elastischen Faltenbälgen ausgestattet, die pneumatisch angetrieben werden und so die künstlichen Glieder beugen und strecken”, so Ralf Becker, Wissenschaftler am IPA in Stuttgart.

Die für den Antrieb erforderlichen Bauteile wie Steuerungseinheit, Ventile und Kompressorpumpe befinden sich im Körper, der je nach Anwendung unterschiedliche Messgeräte und Sensoren tragen kann. Scharniere ermöglichen im Zusammenspiel mit den Faltenbälgen die Vorwärts- und Drehbewegungen der Beine. Die sich diagonal gegenüberliegenden Glieder bewegen sich gleichzeitig. Durch Biegen der vorderen Beinpaare wird der Körper gezogen, durch Strecken der hinteren Extremitäten wird er geschoben.

Die Besonderheit des Hightech-Helfers: Er ist nicht nur sehr leicht, sondern vereint sowohl starre als auch elastische Formen in einem Bauteil und lässt sich mit wenigen Fertigungsschritten kostengünstig herstellen. Bislang wurden Konstruktionen wie der Laufroboter mit konventioneller Maschinenbautechnik gefertigt – ein zeitaufwändiges und teures Unterfangen.

Die Forscher am IPA hingegen setzen auf generative Fertigungstechnologien, konkret auf das selektive Lasersintern (SLS) von Kunststoffen, einem 3D-Druckverfahren. Dabei werden Schritt für Schritt dünne Schichten eines feinen Polyamidpulvers übereinander aufgetragen und mithilfe eines Laserstrahls in Form geschmolzen. So lassen sich komplexe Geometrien, innere Strukturen und Leichtbauteile herstellen – mit ähnlich optimalen Strukturen, wie man sie in der Natur beobachten kann. Die Experten am IPA können ihren Laufroboter flexibel konstruieren, also etwa die Beinmodule für eine bestimmte Belastung stufenlos auslegen.

“Per SLS können wir ein oder auch mehrere Beine in einem Durchgang herstellen, wir minimieren den Montageaufwand, sparen Material ein und reduzieren die Bauzeit. Durch die modulare Bauweise lassen sich einzelne Teile schnell austauschen. Unser Roboter lässt sich so preiswert fertigen, dass er nach einmaligem Gebrauch entsorgt werden kann – wie ein Einmal-Handschuh”, sagt Becker. Ein Prototyp des Roboters ist vom 29. November bis zum 2. Dezember auf der Messe EuroMold 2011 in Frankfurt auf dem Fraunhofer-Gemeinschaftsstand (Halle 11, Stand C66) zu sehen.

Anklicken um die Biografie des Autors zu lesen  Anklicken um die Biografie des Autors zu verbergen