- silicon.de - http://www.silicon.de -

AI-defined Infrastructure: Intelligente Infrastrukturen für eine neue Generation von Geschäftsmodellen und Applikationen

Der Hype um Artificial Intelligence (AI) hat 2016 seinen vorläufigen Höhepunkt erreicht. Das Marktforschungs- und Beratungshaus Tractica geht davon aus, dass der weltweite jährliche Umsatz mit AI von 643,7 Millionen Dollar in 2016 bis 2025 auf 38,8 Milliarden Dollar anwachsen wird. Der Umsatz mit “AI Enterprise-Applikationen” soll von 358 Millionen Dollar in 2016 auf 31,2 Milliarden Dollar im Jahr 2025 steigen. Die durchschnittliche jährliche Zuwachsrate liege bei stolzen 64,3 Prozent.

IT- und Business-Entscheider müssen sich heute also mit dem Potenzial von AI auseinandersetzen. Für Unternehmen jeglicher Art und Form stellt sich somit die Frage, mit welchen Technologien beziehungsweise Infrastrukturen [1], sie ihren Enterprise-Stack AI-ready machen.

Was ist Artificial Intelligence (AI)?

Künstliche Intelligenz (Bild: Shutterstock/agsandrew) [2]

“Das Ziel der Artificial Intelligence besteht darin, Maschinen zu entwickeln, welche sich so verhalten, als wären sie intelligent”, definierte Prof. John McCarthy den Begriff. Sprechen wir in diesem Zusammenhang von intelligent, dann reden wir von einem sich dynamisch verhaltenen System.

Ein System, das wie ein leerer IQ-Container betrachtet werden muss. Ein System, das unstrukturierte Informationen benötigt, um seine Sinne zu trainieren. Ein System, welches ein semantisches Verständnis der Welt benötigt, um in der Lage zu sein zu handeln. Ein System, das auf eine detaillierte Karte seines Kontext angewiesen ist, um unabhängig zu agieren und Erfahrungen aus einem Kontext in den anderen zu übertragen. Ein System, das mit allen notwendigen Mitteln ausgestattet ist, um Wissen zu entwickeln, auszubauen und aufrechtzuerhalten.

Hierbei liegt es in unserer Verantwortung, unser Wissen mit diesen Maschinen zu teilen als würden wir es mit unseren Kindern, Partnern oder Kollegen teilen. Dies ist der einzige Weg, um diese Maschinen, bestehend aus Hard- und Software, in einen Status zu überführen, den wir als “intelligent” beschreiben. Nur damit helfen wir ihnen, auf einer täglichen Basis intelligenter zu werden und legen damit die Grundlage, ein selbstlernendes System zu schaffen. Hierzu werden in der AI-Forschung drei unterschiedliche Typen von AIs unterschieden:

Eines liegt klar auf der Hand. Ohne Technologien wie Cloud Computing hätte AI nicht seinen Boom in der heutigen Zeit erreicht. Sowohl Cloud-Services als auch Fortschritte im Bereich der Machine Intelligence haben es für Unternehmen einfacher gemacht, AI-basierende Funktionsweisen einzusetzen, um enger mit ihren Kunden zu interagieren. Immer mehr Unternehmen wie Airbnb, Uber oder Expedia setzen bereits auf Cloud-basierte Systeme, um AI-relevante Aufgaben zu verarbeiten, welche auf einen intensiven CPU/ GPU-Einsatz sowie Services für umfangreiche Datenverarbeitungs- und Analyseaufgaben zurückgreifen.

Unternehmen sollten im Kontext ihrer AI-Strategie daher die AI-Services unterschiedlicher Cloud-Anbieter evaluieren. Ein weiterer Teil ihrer Strategie sollte eine AI-defined Infrastructure einnehmen. Die Basis für diese Art von Infrastruktur liegt eine General AI zu Grunde, welche drei typische menschliche Eigenschaften vereint, mit denen Unternehmen in die Lage versetzt werden, ihre IT- und Geschäftsprozesse zu steuern.

Welche Anforderungen hat AI an Infrastrukturumgebungen?

AI ist derzeit die Technologie, welche das Potenzial besitzt, nicht nur existierende Infrastrukturen – wie Cloud-Umgebungen – zu verbessern, sondern ebenfalls eine neue Generation von Infrastruktur-Technologien voranzutreiben. Denn als ein wichtiger Technologie-Trend hat AI neben der Entwicklung einer ganz neuen Generation von Programmier-Frameworks auch die Anforderungen an eine neue Generation von Hardware-Technologien beeinflusst, um AI-Applikationen skalierbar zu betreiben.

Mehr zum Thema

Virtual und Mixed Reality in der Arbeitswelt

Den Möglichkeiten ist eine Studie von Deloitte, Fraunhofer FIT und Bitkom nachgegangen. Deren Autoren sehen enormes Potenzial, warnen aber auch vor überzogenen Erwartungen. Der eco Verband hält zugleich das Feld Augmented Reality für unterschätzt.

Mobile- und IoT [3]-Anwendungen haben hinsichtlich der Runtime-Umgebung bisher nur geringe Anforderungen an eine Infrastruktur gestellt. Hierfür war es hingegen kritisch, entsprechende Services bereitzustellen, mit denen ein Backend aufgebaut werden kann. Im Gegensatz dazu erwarten AI-Applikationen nicht nur anspruchsvolle Backend-Services, sondern auch optimierte Runtime-Umgebungen, welche auf die GPU-intensiven Anforderungen von AI-Lösungen abgestimmt sind. AI-Applikationen fordern die Infrastruktur hinsichtlich der parallelen Verarbeitung von Aufgaben in sehr kurzen Zeitzyklen heraus.

Insbesondere für die Beschleunigung von Deep Learning Anwendungen kommen dann bevorzugt GPU-Prozessoren zum Einsatz. GPU-optimierte Anwendungen verteilen die rechenintensiven Bereiche der Anwendung auf die GPU (Grafikprozessor) und lassen die einfachen Berechnungen wie gewöhnlich von der CPU verarbeiten. Damit wird die Ausführung der gesamten Anwendung beschleunigt.

Der Vorteil einer GPU gegenüber einer CPU zeigt sich in den jeweiligen Architekturen. Eine CPU ist ausschließlich auf die serielle Verarbeitung ausgelegt und verfügt nur über wenige Kerne. Eine GPU hingegen besteht aus einer parallelen Architektur mit einer großen Menge kleinerer Kerne, welche die Verarbeitung der Aufgaben gleichzeitig übernehmen. Nach Angaben von NVIDIA ist der Anwendungsdurchsatz einer GPU um den Faktor 10 bis 100 größer als bei einer CPU.

Googles Tensor Processing Unit ist für Maschinenlernen optimiert (Bild: Google). [4]
KI benötigt auch die passende Infrastruktur: Google verwendet in seinen Rechenzentren die Tensor Processing Unit (TPU). Sie begnügt sich mit weniger Transistoren pro Rechenoperation als andere Prozessoren und erreicht so eine höhere Leistung pro Watt für Maschinenlernen, was Nutzern letztlich mehr intelligente Ergebnisse in kürzerer Zeit liefert. (Bild: Google).

Eine Infrastruktur sollte also in der Lage sein, bei Bedarf ein Deep Learning Framework wie TensorFlow [5] oder Torch über hunderte oder gar tausende Nodes bereitzustellen, die direkt mit der optimalen GPU-Konfiguration zur Verfügung stehen. Hiermit beginnend lässt sich eine Liste von Anforderungen (nicht vollständig) für Infrastrukturen zusammenstellen, um AI-Anwendungen zu unterstützen:

Infrastrukturumgebungen und Technologien für AI

Im Laufe der letzten Jahre wurden enorme Investitionen in AI-Funktionalitäten auf Cloud-Plattformen getätigt. Insbesondere die führenden Public Cloud-Anbieter, darunter Amazon, Microsoft und Google liegen hier weit vorne. Aber auch viele PaaS-Anbieter haben ihre Angebote um AI-Services erweitert. Die aktuelle AI-Technologie-Landkarte besteht derzeit aus drei Hauptgruppen:

Zu weiteren AI-relevanten Kategorien und ihren Anbietern zählen:

Unterm Strich lässt sich sagen, dass mit der Weiterentwicklung von AI-Technologien sich gleichzeitig auch Infrastruktur-Umgebungen von einem unterstützenden Modus hin zu einem Model transformieren müssen, in welchem AI-Applikationen so gleichwertig unterstützt werden wie es heute für Web-Applikationen und –Services der Fall ist.

Die Zukunft liegt in einem AI-enabled Enterprise

Eine AI-defined Infrastructure ist ein essentieller Teil des heutigen Enterprise-Stacks und bildet die Basis für das AI-enabled Enterprise. Denn eines liegt ebenfalls klar auf der Hand. Neben dem oft zitierten “War for Talent” oder der Unfähigkeit großer Unternehmen, sich effektiv zu verändern, sehen sich renommierte Unternehmen vielen weiteren Herausforderungen gegenüber.

Amazon Lieferdrohne (Bild: Amazon) [6]
Amazon hat vor gut einem Jahr eine Vereinbarung mit der britischen Regierung unterzeichnet und kann den Lieferservice Amazon Prime Air dort testen. Er ist ein Beispiel für radikale Veränderungen in Branchen durch Eindringlinge von außen (Bild: Amazon)

Was gerne übersehen wird ist die unterschätze Gefahr des Mitbewerbs. Nicht etwa die der bekannten Wettbewerber, sondern Hightech-Unternehmen wie Amazon, Google, Facebook und Co., die unaufhaltsam in renommierte Märkte eimarschieren. Mit unvorstellbaren finanziellen Mitteln dringen diese Hightech-Unternehmen in bekannte Wettbewerbslandschaften renommierter Unternehmen ein und kapern den gesamten Kundenlebenszyklus.

Amazon ist nur ein Beispiel, das bereits damit begonnen hat, die Zwischenhändler in der eigenen Lieferkette aus dem Weg zu räumen. Wir können sicher sein, dass Unternehmen wie DHL, UPS oder FedEx in Zukunft ihre Geschäfte anders machen werden als heute. Hinweis: Amazon Prime Air [7]. Weiterhin hat Amazon alles in die Wege geleitet, um ein vollständiger Ende-zu-Ende Anbieter von Gütern zu werden. Digital wie auch nicht Digital.

Wahrscheinlich wird es auch nicht mehr lange dauern, bis Facebook möglicherweise eine Bankenlizenz beantragen wird. Der potenzielle Kundenzugang, ausreichend Informationen über seine Nutzer und das notwendige Kapital liegen bereits vor. Folglich müssen renommierte Unternehmen schlagkräftige Antworten finden, wenn sie morgen weiterhin existieren wollen.

AI ist eine dieser Antworten und ein kraftvolles Hilfsmittel im Werkzeugkasten von Unternehmen, um sich der Wettbewerbssituation zu stellen.