Der Kaufhaus Cop für den E-Commerce

Ein wachsames Auge und etwas gesunde Menschenkenntnis – das reicht im Laden um die Ecke oft schon aus, um Betrüger zu erkennen. Im E-Commerce ist das bis dato eine ganz andere Sache: Betrugsvorfälle kosten den Onlinehandel circa zwei Prozent seines Umsatzes. In Deutschland führt das zu einem jährlichen Schadensvolumen von mehreren Milliarden Euro – so eine aktuelle Studie des Fraunhofer-Instituts. Erhebliche Einbußen, die reduziert werden können, wenn die Shop-Betreiber anstatt auf eine regelbasierte „Sicherheitsschranke“ (Rule Based Fraud Prevention), auf einen KI-basierten „Kaufhaus Cop“ (Risk Based Fraud Prevention) setzen.

Akzeptieren oder nicht akzeptieren, das ist hier die Frage

Bislang nutzt die Betrugsprävention im E-Commerce die Rule Based Fraud Prevention. Das bedeutet: Feste Regeln bestimmen, ob eine Kreditkartenzahlung akzeptiert wird oder nicht. Sowohl für Händler als auch Kunden ein Problem. Denn aufgrund der starren Vorgaben verweigert die Sicherheitsschranke auch harmlosen Transaktionen das Passieren oder lässt betrügerische Vorgänge durch. Die Genehmigung einer Transaktion hängt dabei von festgelegten Bedingungen ab: Ist etwa das Smartphone, mit dem online bezahlt wird, unbekannt oder nutzt jemand die Karte in einem als kritisch eingestuften Land, dann wird die Wahrscheinlichkeit größer, dass die Transaktion abgelehnt wird. Die Krux dabei ist jedoch, dass dieses Vorgehen oft die Falschen trifft: Sind die Regeln zu weit gefasst, steigt die Betrugsrate. Sind sie zu streng, sinkt die Konversion.

Einfach öfter ins Schwarze treffen

Anders als der regelbasierte Ansatz setzt die Risk Based Fraud Prevention auf Machine Learning und künstliche Intelligenz. Dadurch werden Verdachtsfälle wesentlich exakter beurteilt und Händler dürfen laut der Studie des Fraunhofer-Instituts einen deutlichen Anstieg an neuen, sicheren Geschäften erwarten. Die Grundlage hierfür stellt ein Algorithmus dar: Er kalkuliert das Risiko und lernt mit jeder Transaktion dazu, indem er bei den durchgeführten Zahlungen Betrugsvorfälle und erfolgreiche Abschlüsse bestimmt und Muster identifiziert.

Diese Form des Risikomanagements ist wesentlich präziser und erkennt neue Betrugsszenarien besser und schneller, weil es die in der Vergangenheit fehlgeschlagenen Transaktionen analysiert. Außerdem passt es sich sowohl neuen Entwicklungen bei der Kriminalität als auch einem veränderten Kaufverhalten an – der perfekte Kaufhaus Cop. Dabei lernt die KI nicht nur von ihren eigenen Erfahrungen, sondern auch von den anonymisierten Daten aller vom PSP (Payment Service Provider) abgewickelten Transaktionen.

Der Score entscheidet

Vom Klick auf den Bezahlbutton, bis hin zur Kaufbestätigung sind es nur ein paar Millisekunden. Doch diese Zeit genügt der KI, um komplexe Berechnungen und Analysen durchzuführen. Das läuft wie folgt ab: Nachdem eine neue Kreditkartenzahlung im Shop des Händlers eingegangen ist, werden die zugehörigen Transaktionsdaten an den PSP weitergeleitet. Die KI betrachtet daraufhin verschiedene Daten wie den Kaufbetrag, das Herkunftsland der Karte oder dem Standort des vom Kunden genutzten Endgerätes.

Für jeden dieser Punkte ermittelt die KI eine individuelle Betrugswahrscheinlichkeit. Dabei greift sie auf Transaktionshistorien zurück und untersucht, wie oft es bei der entsprechenden Datenausprägung zum Betrug kam. Nun kombiniert der Algorithmus die einzelnen Betrugswahrscheinlichkeiten und berechnet so einen Gesamt-Score für die vorliegende Transaktion. Der ermittelte Score und die vom Händler definierten Schwellenwerte entscheiden schließlich, ob die Transaktion als akzeptiert, blockiert oder manuell zu prüfen klassifiziert wird.

Betrug gibt es nicht erst, seitdem es den Onlinehandel gibt. Und gerade im virtuellen Raum ist es schwer zu erkennen, wer nun Betrüger und wer ehrlicher Kunde ist. Dennoch hinken Präventionsmaßnahmen wie der regelbasierte Ansatz oft den Kriminalitätsentwicklungen hinterher. KI-basierte Systeme hingegen lernen unmittelbar mit und können Händlern so einen echten Vorteil gegenüber Kriminellen verschaffen. Außerdem tragen sie dazu bei, dass die Konversion erhöht wird, da weniger Transaktionen fälschlicherweise als Betrug eingestuft werden. Trotz alledem ist das Potenzial des KI-Kaufhaus Cops noch lange nicht erschöpft.  Wir befinden uns erst am Anfang einer spannenden Entwicklung.

Ralf Gladis
ist Mitgründer und Geschäftsführer des internationalen Payment Service Providers Computop – the payment people. Er ist verantwortlich für das Produktportfolio und die strategische Ausrichtung von Computop. 2022 wurde Ralf Gladis in das Digital Finance Forum berufen, die Expertenkommission des Bundesfinanzministeriums.

Roger Homrich

Recent Posts

Excel als Rückgrat deutscher Lieferkettenplanung

Lieferkettenplanung in Deutschland auf Basis von Excel bei 37 Prozent der befragten Unternehmen im Einsatz.

15 Stunden ago

Siemens automatisiert Analyse von OT-Schwachstellen

Bedienpersonal von Fertigungsanalagen soll mögliche Risiken auch ohne Cybersecurity-Fachwissen erkennen und minimieren können.

2 Tagen ago

Cyberabwehr mit KI und passivem Netzwerk-Monitoring

Schiffl IT: Anomalien im Netzwerkverkehr und in den Systemen in Echtzeit identifizieren.

4 Tagen ago

Zero Trust bei Kranich Solar

Absicherung der IT-Infrastruktur erfolgt über die Zero Trust Exchange-Plattform von Zscaler.

4 Tagen ago

KI in der Medizin: Mit Ursache und Wirkung rechnen

Maschinen können mit neuen Verfahren lernen, nicht nur Vorhersagen zu treffen, sondern auch mit kausalen…

4 Tagen ago

Sicherheit für vernetzte, medizinische Geräte

Medizingeräte Hersteller Tuttnauer schützt Gerätesoftware mit IoT-Sicherheitslösung.

5 Tagen ago