Categories: CloudVirtualisierung

Datenbanken der Zukunft: Tech verändert die Finanzindustrie

Nur wenige Branchen müssen sich derzeit so intensiv neu erfinden wie Banken und Finanzdienstleister. Einerseits ist starke Kundennähe durch ein Filialnetz notwendig, andererseits auch rasche technologische Innovationen. Auswirkungen der Corona-Pandemie auf das Kundenverhalten sind hierbei noch nicht einmal berücksichtigt. Self-Service-Lösungen, codefrei zu erstellende Vorhersagen sowie Modellberechnungen helfen Finanzdienstleistern dabei, sich jetzt weiterzuentwickeln und Kunden sowie Aufsichtsbehörden bestmöglich zu bedienen.

Das Kerngeschäft von Banken ist schon seit einigen Jahren unter Druck, insbesondere durch FinTech- und BigTech-Unternehmen wie Google, Amazon und weitere. Dazu kommen Neo-, Challenger- und Non-Banken wie N26 oder die russische Digitalbank Tinkoff, die auf die jüngere Generation von Konsumenten zielen. Neue Dienstleister drängen ebenfalls auf den Markt, wie das Vergleichsportal Check24, das mit C24 eine eigene Online-Bank startet. Darüber hinaus werden mobile Wallets wie ApplePay beliebter, da Anwender zunehmend mit dem Smartphone bezahlen möchten. Zudem versuchen Unternehmen verstärkt ein eigenes Kunden-Ökosystem inklusive Payment-Lösung aufzubauen, dazu zählen Supermärkte wie Lidl sowie der Zahlungsdienstleister Klarna.

Die gute Nachricht für Banken in Deutschland: im internationalen Vergleich schneiden sie recht gut ab, denn ihre Retail-Kunden verhalten sich sehr konservativ. So ist die Bereitschaft der Kunden zum Wechsel ihrer Bank extrem gering. Im Schnitt ist der Deutsche länger mit der eigenen Bank zusammen als mit dem Lebenspartner: 48 Prozent der Bankkunden sind seit mehr als zehn Jahren bei ihrer Bank, so das Ergebnis aus der Umfrage „CX-Report“ von Kantar unter deutschen Verbrauchern.

Tom Becker, der Autor dieses Gastbeitrags, ist Tom Becker ist General Manager Central & Eastern Europe bei Alteryx (Bild: Alteryx).

Eine weitere Herausforderung ergibt sich aus der Tatsache, dass die Kundenwünsche an das Banking je nach Alter extrem schwanken. So möchten die Generationen Y und Z, das entspricht Jugendlichen und Erwachsenen bis etwa Mitte/Ende 30, ihre Bankgeschäfte gerne per Smartphone erledigen. Die Generation X im Alter von Ende 30 bis Mitte 50 präferiert noch den Webbrowser am Desktop-PC für das Online-Banking. Die Babyboomer von etwa Mitte 50 bis Anfang/Mitte 60 oder noch Ältere möchten dagegen auf den persönlichen Kontakt in der Bankfiliale nicht verzichten. Dazu kommt, dass vor allem die jüngere Generation durch das Internet-Shopping an einfach benutzbare Oberflächen und eine individuelle Ansprache gewöhnt ist. So müssen Banken heute in der Lage sein, individualisierte Services zu liefern, die sich an den persönlichen Anforderungen und der Lebenssituation der Kunden ausrichten. Allerdings: laut dem CX-Report von Kantar bewerten nur noch 17 Prozent der Deutschen ihre eigene Bank als kundenzentriert.

Wie kann Data Analytics der Finanzindustrie helfen?

Banken müssen vor allem ihre Prozesseffizienz verbessern und diesmal muss dies einfach besonders schnell und konsequent erledigt werden, da das Tempo der Marktveränderungen im Vergleich zu früheren Jahren zugenommen hat. Eine schnelle Analyse etwa von Geolocation-Daten in Kombination mit Daten über die Bevölkerungsstruktur und das Einkommen ergeben zusammen wertvolle Hinweise darüber, wie sich einzelne Standorte hinsichtlich ihrer Angebote vor Ort optimieren lassen, also ob zum Beispiel mehr Mitarbeiter für eine persönliche Beratung notwendig sind, weil in einem Stadtviertel viele Rentner wohnen. Damit schnell eine Entscheidung möglich ist, beispielsweise wenn eine neue Region erschlossen werden soll, müssen auch möglichst viele Mitarbeiter in der Lage sein, solche Auswertungen eigenständig vorzunehmen.

Self-Service-Data-Analytics wird an dieser Stelle zu einem zentralen Wettbewerbsvorteil. Rasch verfügbare Analysemodelle helfen dabei, sich auf zukünftige Szenarien vorzubereiten und besser zu verstehen, wie sich Kunden verhalten. So können verstärkt Kreditausfälle in einer wirtschaftlich unsicheren Region auftreten, zum Beispiel wenn bei Automobilzulieferern rund um traditionelle Standorte wie Stuttgart, Wolfsburg oder München Entlassungen anstehen. Treten viele Kunden in einem kurzen Zeitrahmen in den vorzeitigen Ruhestand, werden diese schneller auf ihre Ersparnisse zurückgreifen und langfristig angelegtes Geld vorzeitig kündigen. Solche Entwicklungen zu modellieren und verschiedene Szenarien berechnen zu können, stärkt die eigene Wettbewerbskraft. Denn wer schon heute fortgeschrittene Analysen nutzen kann, besitzt einen klaren Vorteil in der strategischen Planung.

Ein Beispiel aus der Praxis

Ein Beispiel für den sinnvollen Einsatz von Self-Service-Data-Analytics liefert Paychex, ein US-Dienstleister für Lohn- und Gehaltsabrechnungen. Das Unternehmen führt jeden Monat für mehrere Hunderttausend Kunden zwei Dutzend Prognosemodelle durch, um Up-Sell- und Cross-Sell-Potenziale sowie Retention und Kreditrisiko zu ermitteln. Für Kunden wird zum Beispiel die Wahrscheinlichkeit ermittelt, ob sie ein Produkt kaufen, den Service kündigen oder ob ein Zahlungsausfall droht. Diese Ergebnisse müssen anschließend für die jeweiligen Mitarbeiter in den Fachbereichen individuell nach ganz verschiedenen Kriterien aufbereitet werden, wie Regionen, Firmengröße und Branchen. Für die Datenanalysten ist dies eine zeitintensive Tätigkeit außerhalb ihrer Kernkompetenzen.

Durch die Nutzung einer Self-Service-Data-Plattform ist es den fachlichen Anwendern heute möglich, individuelle Modellierungs- und Kundenkriterien selbst zu erfassen und die gewünschten Prognosen durchzuführen. Die spezialisierten Data Scientists können sich so ihren Kernaufgaben widmen, während die Mitarbeiter schneller an die gewünschten Ergebnisse kommen und die vorhandenen Umsatzpotenziale ausnutzen. Der Self-Service-Ansatz lässt sich natürlich in beliebige Branchen adaptieren und trägt dazu bei, dass sich eine neue Datenkultur innerhalb einer Organisation entwickelt, sodass im Laufe der Zeit immer mehr Mitarbeiter befähigt werden, eigenständig Analysen mit aktuellen Daten durchzuführen.

Geldwäsche – Automatisierung notwendig

Ein weiteres Szenario für Data Analytics ist die Betrugserkennung. Hier hat der Fall Wirecard es deutlich gezeigt: Die Finanzaufsichtsbehörden stehen an einem Scheidepunkt. Hervorgerufen durch den Sparkurs der letzten Jahrzehnte kämpfen sie genauso wie Banken und Finanzinstitute selbst mit einem erheblichen Personal- und Ressourcenmangel. Doch mit neuen Technologien wie KI oder robotergestützter Prozessautomatisierung (Robotic Process Automation, RPA) können sie diesen Mangel kompensieren und Analysemodelle implementieren, um verdächtige Transaktionen automatisiert zu entdecken. Mit Self-Service-Analysen gelingt es auch Mitarbeitern außerhalb des Data Science-Teams, branchenspezifische Finanzkennzahlen zu entwickeln, die sich für Vergleiche nutzen lassen. So zeigte Wirecard in bestimmten Marktsegmenten über Jahre hinweg überdurchschnittlich positive Finanzkennzahlen. Wettbewerber, die ähnliche Produkte und Dienstleistungen anboten, konnten diese Kennzahlen jedoch nicht erreichen. Dies könnte zumindest ein Hinweis sein, dass sich Banken, Wirtschaftsprüfer oder Behörden diese Geschäftssegmente genauer ansehen sollten – aber dafür müssen die Daten und Analysen einer breiten Gruppe von fachlichen Mitarbeitern zur Verfügung stehen und nicht nur einer kleinen Gruppe von Spezialisten mit begrenzten Kapazitäten.

Wie sich ein solches System realisieren lässt, zeigt die australische Non-Profit-Organisation AFCX (Australian Financial Crime Exchange). Diese ergänzt mit ihren Auswertungen die bereits in den nationalen Banken bestehenden Fraud Detection-Systeme und hilft so dabei, Finanzbetrügereien schneller aufzudecken. Damit dies gelingt, tauschen die angeschlossenen Banken mit der AFCX regelmäßig Datensätze zu Finanzströmen aus, die diese auf Unregelmäßigkeiten untersucht. Durch die gestiegenen Anforderungen an die Datenanalysen kam das bestehende System jedoch an seine Grenzen. Mit Alteryx und weiteren Infrastrukturkomponenten wurde eine neue Lösung realisiert, bei der Alteryx als zentrale Lösung die Analyse von Daten übernimmt und Reports an die Banken zurückliefert. Der ganze Prozess konnte hochgradig automatisiert und beschleunigt werden. Das Ergebnis: mit dem neuen Workflow gelingt die Bereitstellung von individuellen Reports mit rund 7.000 Datensätzen anstatt wie früher in sieben Stunden in nur noch sieben Sekunden. Damit können Banken deutlich schneller auf Betrugsversuche reagieren.

Was können Banken sonst noch tun?

Generell ist eine Customer-first-Ausrichtung wichtiger als zuvor: Dienstleistungen müssen soweit wie möglich digitalisiert, über alle Kanäle abrufbar und individualisiert sein. Früher bestand Kundenorientierung noch darin, mehr Filialen zu eröffnen. Heute ist das Gegenteil der Fall und eine individuelle Ansprache über alle Kanäle ist wichtig für den Erfolg. Beispiel: die junge Generation möchte auf TikTok die Vorteile eines Teenager-Girokontos erfahren, während die Generation über 50 eher klassische Anlagemöglichkeiten sucht und dafür einen gedruckten Prospekt lesen möchte. Banken müssen daher die Lebenswelten ihrer Kunden verstehen, um diese gezielt ansprechen zu können. Eine weitere Herausforderung besteht daher darin, den Online-, Mobil- und Filialservice zu einer nahtlosen Kundenerfahrung zusammenzuführen.

Damit dies gelingt, ist eine Auswertung von Transaktionsdaten zum Kundenverhalten notwendig. Die Daten dazu sind bereits in jeder Bank vorhanden – allerdings werden sie nicht konsequent genutzt bzw. analysiert. Um dies zu ändern, hilft auch an dieser Stelle wieder der Self-Service-Ansatz, der Mitarbeiter befähigt, auf Basis eigener Anforderungen und Ideen bestehende Daten zu analysieren.

Dazu ein Beispiel: mit Analytics-Lösungen lassen sich die Vertriebsimpulse innerhalb eines Kundensegments bündeln. Mitarbeiter können beispielsweise zurückliegende Kundenanfragen nach Krediten mit aktuellen Nachfragen zu Immobilien verknüpfen. Die Datenanalyse kann prognostizieren, dass der Kunde demnächst vermutlich eine Immobilienfinanzierung wünscht und dies dem Vertriebs- und Marketing-Team signalisieren. Treten über einen bestimmten Zeitraum verstärkt Nachfragen nach Immobilien in einer Region auf, könnte das Team einen Hinweis erhalten, dass sich die Ansprache einer größeren Kundengruppe lohnt.

Was heißt das für 2021?

Die digitale Transformation präsentiert sich vielfältig. Sie prägt die Kultur der Unternehmen und zeigt sich in der Demokratisierung von Daten. Sie manifestiert sich aber auch in neuen Self-Service-Lösungen, die jeden Mitarbeiter befähigen, die richtigen (Business-)Fragen zu stellen und schnelle Antworten zu erhalten – idealerweise als Team gemeinsam mit der IT-Abteilung. Im Jahr 2021 müssen die Verantwortlichen in den Fachbereichen und der IT zeigen, wie Daten und Analytics dabei helfen, Abläufe im eigenen Unternehmen nachhaltig zu verändern. It takes a village!

Anja Schmoll-Trautmann

Anja Schmoll-Trautmann berichtet seit 2001 vorrangig für ZDNet.de über aktuelle Entwicklungen im Bereich Consumer Electronics, Mobile und Peripherie. Seit 2012 beschäftigt sie sich auch für silicon.de immer wieder mit Business-Hardware, Digitalisierung und Markttrends.

Recent Posts

Agile Entwicklung: Was bringt sie Unternehmen und deren Kunden?

Von Dr. Matthias Laux, Head of Software Development, Wolters Kluwer Tax & Accounting Deutschland.

2 Monate ago

ULE ist für Residential Gateways unverzichtbar

Bedarf an stabilen Funkstandards im Heimnetz ist größer denn je, sagt Ulrich Grote, Vorsitzender der…

7 Monate ago

Digitalisierung in Zeiten von Corona – die Cloud als treibende Kraft

Unternehmen haben infolge der Corona-Pandemie mit einigen Herausforderungen zu kämpfen – nicht nur finanziell, sondern…

8 Monate ago

Leben retten mit pseudonymisierten Daten

Geoinformationssysteme ermöglichen immer bessere Sicherheits-Anwendungen. So lassen sich zum Beispiel Panik-Potentiale bei Menschenversammlungen frühzeitig erkennen.…

11 Monate ago

Cyber-Sicherheit 2021: Fünf Prognosen für das kommende Jahr

Cloud Computing, Home-Office, Erpressungskampagnen und „Carpet-Bombing“ werden die IT-Sicherheit 2021 vor noch mehr Herausforderungen stellen.

12 Monate ago

Perspektiven im digitalen Strukturwandel

Für viele traditionelle Unternehmen war Digitalisierung bisher ein nettes Wort, das eher wie das Thema…

12 Monate ago