NASA plant 5G-Netzwerk mit Nanosatelliten

Sie werden nicht wie die gängigen großen Kommunikationssatelliten im geostationären Orbit, sondern deutlich niedriger im niederen Erdorbit (Low Earth Orbit, LEO) positioniert. “Viele kleine Satelliten als verteiltes, dezentrales System sind ein modernerer Ansatz”, bestätigt Klaus Schilling vom Institut für Informatik der Universität Würzburg. Als Vorteil gelten etwa geringere Startkosten.

Das 5G-Netzwerk wird Internet-Protokoll-basierten und verwandten Diensten dienen, so die NASA. Dazu zählen etwa VoIP, Video und Datenübertragung ebenso wie ein intelligentes System für die Kommunikation der Geräte. Die Umsetzung ist mit vielen, nur etwa fünf bis 50 Kilogramm schweren Nanosatelliten in einer sogenannten “Konstellation” geplant. Diese wird im LEO und damit in deutlich geringeren Höhen als dem geostationären Orbit positioniert. “Die Konstellation wird ein robustes, globales, weltraumgestütztes High-Speed-Netzwerk für Kommunikation, Datenspeicherung und Erdbeobachtung bieten”, ist m2mi-CEO Geoff Brown überzeugt. Die Nanosatelliten würden kostengünstig mit Massenproduktionstechniken gefertigt werden. Wann genau das System einsatzbereit sein soll, lassen NASA und m2mi aber noch offen.

“Die großen Agenturen in Europa tendieren derzeit noch eher zu einzelnen, großen Satelliten”, meint Schilling. Doch der Trend gehe auch in Europa verstärkt hin zu Nanosatelliten und den noch leichteren Picosatelliten mit einem Gewicht im Bereich eines Kilogramms. Schilling und sein Team haben im Oktober 2005 mit UWE-1 (Universität Würzburg Experimental-Satellit 1) einen Picosatelliten gestartet, welcher der Erforschung des Einsatzes solcher Satelliten in der Telekommunikation dient. In diesem Jahr soll mit UWE-2 ein weiterer Forschungssatellit folgen, der unter anderem für weiterführende Experimente zum Themenbereich “IP in Space” dient. Die Forschungsarbeit des Teams wurde in dieser Woche auf der Hannover Messe vorgestellt.

Das Interesse am Konzept der Schwärme kleiner Satelliten im LEO hat auch finanzielle Gründe. “Ein großer, geostationärer Satellit muss auf knapp 36.000 Kilometer Höhe über dem Erdboden gebracht werden”, erklärt Schilling. Als LEO dagegen wird ein Bereich bezeichnet, der weitgehend Höhen von unter 1000 Kilometern umfasst, so Schilling. Der Transport von kleineren Satelliten in diesen LEO sei mit kleineren Raketen möglich. Das erlaube auch kleineren Anbietern Starts durchzuführen und stelle geringere Kosten für den Satelliten-Start in Aussicht. “Da wird sich im kommerziellen Bereich einiges tun”, meint Schilling daher abschließend.

Silicon-Redaktion

Recent Posts

HPE knackt mit Supercomputer Aurora erneut die Exascale-Schwelle

„Aurora“ läuft beim Argonne National Laboratory des US-Energieministeriums und hat auf 87 Prozent des Systems…

19 Stunden ago

Exascale-Supercomputer JUPITER setzt Maßstäbe für Energieeffizienz

Europäischer Supercomputer JEDI kommt auf den ersten Platz in der Green500-Liste der energieeffizientesten Supercomputer.

19 Stunden ago

Papierhersteller der digitalen Ära

Data Awakening: Huawei präsentierte beim Innovative Data Infrastructure Forum 2024 in Berlin neue, auf KI…

3 Tagen ago

Cyberangriffe bedrohen die Demokratie

Um ihre Verteidigung zu stärken, müssen Staaten und Unternehmen sicherstellen, dass KRITIS-Betreiber nicht nur die…

5 Tagen ago

Kritische Infrastruktur: BSI-Zahlen zur Robustheit

Reichen die Sicherheitsvorkehrungen der KRITIS-Betreiber bereits aus? Das BSI liefert dazu Kennzahlen auf einer neuen…

6 Tagen ago

Automotive: Phishing-Angriffe auf jedes zweite Unternehmen

Laut Kaspersky ist Schadsoftware die zweithäufigste Bedrohung. Angriffe auf vernetzte Fahrzeuge folgen erst mit Abstand.

6 Tagen ago